quinta-feira, 2 de julho de 2020



⇔PARA ENTENDER O SDCTIE GRACELI.

O SDCTE GRACELI É UM SISTEMA FÍSICO E QUÍMICO QUE SE FUNDAMENTA EM DEZ OU MAIS DIMENSÕES REAIS DE GRACELI , E NÃO DIMENSÕES DE ESPAÇO [TRIDIMENSIONAL]. E TEMPO,  E NEM DIMENSÕES DE UNIVERSOS PARALELOS, COMO A TEORIA [M], OU SEJA, SÃO DIMENSÕES ENVOLVENDO A MATÉRIA, ENERGIA, FENÔMENOS E CATEGORIAS DE GRACELI [POTENCIAIS, TIPOS, NÍVEIS, TEMPO DE AÇÃO, E TRANSITORIEDADE DE ESTADOS FÍSICOS, FENOMÊNICOS E QUÂNTICOS, E MESMO TRANSCENDENTES.


E CATEGORIAS DENTRO DE SISTEMAS DE TRANSIÇÕES ONDE SE TEM OS TIPOS, NÍVEIS, POTENCIAIS, E TEMPO DE AÇÕES NAS TRANSIÇÕES, ENERGIAS, ESTRUTURAS, E FENÔMENOS. FORMANDO UM UNIVERSO DE INTERAÇÕES, TRANSFORMAÇÕES E TRANSIÇÕES.

E, TRANSIÇÕES DE ESTADOS COM AS TRANSFORMAÇÕES E INTERAÇÕES, QUE TAMBÉM ENVOLVE ENERGIAS, ESTRUTURAS, FENÔMENOS, CATEGORIAS E O SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI.


SE USA A REPRESENTAÇÃO ¨ESTRUTURA¨ PARA SE DIFERENCIAR DE MASSA [LIGADA A ENERGIA, FORÇAS E PESOS, E UM UNIVERSO QUADRIMENSIONAL]], E QUE AQUI NO  CASO É UM UNIVERSO DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DENTRO E NO SDCTIE, [VER JÁ PUBLICADOS EM TEXTOS E TEORIAS NA INTERNET].


ESTRUTURA É UM CONCEITO LÓGICO SIMBÓLICO DENTRO DO SDCTIE GRACELI EM RELAÇÃO À DEZ OU MAIS DIMENSÕES DE GRACELI, CATEGORIAS, TRANSFORMAÇÕES E INTERAÇÕES, E ESTADOS TRANSICIONAIS.


E, O QUE DETERMINA OS ELEMENTOS QUÍMICOS NÃO É APENAS O NÚMERO DE ELÉTRONS, PRÓTONS, NÊUTRONS, MAS TAMBÉM O SDCTIE GRACELI, E ALGUMAS PROPRIEDADES OCULTAS [AINDA DESCONHECIDAS.] OU SEJA A NATUREZA
 DA MATÉRIA NÃO É APENAS ÀTOMOS E PARTÍCULAS MAS TAMBÉM O SDCTIE GRACELI.


O QUE DETERMINA O MOVIMENTO NATURAL DOS CORPOS É O SDCTIE GRACELI. E NÂO FORÇAS, ENERGIAS, OU GEOMETRIA ESPAÇO TEMPORAL CURVA.

LANCE UMA ESFERA DENTRO DE UM CILINDRO, E ELE DEPOIS DE ALGUMAS VOLTAS PARARÁ NO LUGAR MAIS BAIXO, LOGO PARA UMA MECÂNICA O ESPAÇO TEMPO CURVO NÃO FUNCIONA. 


É UM SISTEMA EM QUE O TEMPO É INEXISTENTE [OU SEJA, SÓ EXISTE EM RELAÇÃO A MENTE HUMANA [LOGO NÃO VARIA COMO FENÔMENO E COISA EM SI], E OS FENÔMENOS,

 E, TODO SDCTIE GRACELI NÃO EXISTE DENTRO DE UM UNIVERSO TRIDIMENSIONAL ESPACIAL [DE LATITUDE, LONGITUDE E ALTURA] MAS SIM, DENTRO DE UM UNIVERSO DE DIMENSÕES [DEZ OU MAIS DE GRACELI], DENTRO DAS ESTRUTURAS, ENERGIAS, FENÔMENOS, CATEGORIAS, INTERAÇÕES E TRANSFORMAÇÕES, COMO TAMBÉM DENTRO DOS ESTADOS TRANSICIONAIS FENOMÊNICO DE GRACELI.



VER TEORA TERMO-GRAVITACIONAL GRACELI.


INSTABILIDADE QUÂNTICA GRACELI NO SDCTIE GRACELI.

CONFORME A INTENSIDADE DE ENERGIA E ESTADOS QUÂNTICOS DIVIDIDO PELO DIÂMETRO E MASSA [ESTRUTURA DA PARTÍCULAS , E EM REAÇÃO AO SDCTIE GRACELI SE TEM INTENSIDADE E VARIAÇÕES DE FLUXOS EM INSTABILIDADES QUÂNTICAS, EM TODOS OS FENÔMENOS, ENERGIAS, ESTADOS, PRINCÍPIOS, EXCLUSÕES DE PAULI, INCERTEZAS [COMO DE  Heisenberg ], GATO Schrödinger , FUNÇÃO DE ONDAS, EQUAÇÕES DE DIRAC , equação de Schrödinger , CONSTANTE DE PLANCK, E OUTROS, COMO EFEITOS FOTOELÉTRICO, TUNELAMENTOS EMARANHAMENTOS, INTERAÇÕES, TRANSFORMAÇÕES, FÓTONS, ESPECTROSCOPIA, E OUTROS, OU SEJA, TEM TODA MECÂNICA QUÂNTICA E TEORIA, RELATIVIDADE, CORDAS, E CONFORME O SDCITE GRACELI.


A MESMA INSTABILIDADE ACONTECE NA ENTROPIA, ENTALPIA, GASES, PRESSÕES, FLUIDOS, ASTRONOMIA [INCLINAÇÕES, EXCENTRICIDADES, ROTAÇÕES, FORMAÇÕES DE ESFERICIDADE DE ASTROS E BURACOS NEGRO, E OUTROS. E COSMOLOGIA, GEOFÍSICA, ASTROFÍSICA E GEOQUÍMICA E ASTROQUÍMICA.




NO SDCITE GRACELI SE TEM:


ENERGIA DIFERENTE DE MASSA,

POIS, ENERGIA É IGUAL AO SDCTIE GRACELI.


MASSA É DIFERENTE DE ESTRUTURA, POIS,

ESTRUTURA = AO SDCITE GRACELI.

POIS, MASSA É UM CONCEITO RELACIONADO COM PESO E FORÇAS, JÁ NESTE SISTEMA [SDCTIE GRACELI] SE USA ESTRUTURA ONDE SE TEM AS DEZ OU MAIS DIMENSÕES DE GRACELI, AS CATEGORIAS, O SISTEMA DE ESTADOS TRANSICIONAIS DE GRACELI, INTERAÇÕES E TRANSFORMAÇÕES [SDCTIE GRACELI].






domingo, 14 de junho de 2020


AS ESTRUTURAS E ENERGIAS SÓ MOVEM [MOMENTUM] [FORA DE QUALQUER SISTEMA DE FORÇAS E GEOMETRIAS] CONFORME O SDCITE GRACELI, OU SEJA, NÃO DEPENDE DE FORÇAS, MASSAS, OU MESMO DE ESPAÇO-TEMPO CURVO.

OU SEJA, PARTÍCULAS DENTRO DE PARTÍCULAS, ÍONS, CARGAS, ENERGIAS, VARIAÇÕES DE ENERGIAS NÃO SE MOVEM POR FORÇAS MAS CONFORME SE ENCONTRA NELAS O SDCTIE GRACELI.

CONFORME O  EXPOSTO ABAIXO.


OU MESMO, O TEMPO NÃO EXISTE COMO EM-SI, E O ESPAÇO TAMBÉM VARIA CONFORME O SDCTIE GRACELI.


COMO TAMBÉM ESTRUTURAS [MASSAS E SUBSTÂNCIAS] ESTÃO RELACIONADAS COM O SDCTIE GRACELI.


O MESMO PARA O ESPAÇO, OU SEJA, O ESPAÇO MÍNIMO ENTRE DOIS PONTOS NÃO UMA RETA OU UMA CURVA, MAS SIM, UM SISTEMA DE ENERGIAS, DIMENSÕES E POSICIONAMENTOS, [CONFORME O SDCTIE GRACELI].


POIS, DUAS PARTÍCULAS EMARANHADAS NÃO DEPENDEM DE ESPAÇOS FÍSICOS, MAS DE ESPAÇOS QUÂNTICO, ESTADO QUÂNTICO, E ENTRELAÇAMENTO QUÂNTICO DIMENSIONAL DE GRACELI.


E ESPAÇO QUÂNTICO, ESTADO QUÂNTICO, E ENTRELAÇAMENTO QUÂNTICO ESTÃO RELACIONADOS COM O SDCITE GRACELI.






RELATIVISMO QUÂNTICO DIMENSIONAL GRACELI.


O POSICIONAMENTO E DISTANCIAMENTO ENTRE PARTÍCULAS, ENERGIAS, E FENÔMENOS ALTERAM TODO SISTEMA FÍSICO DENTRO DAS PARTÍCULAS,, 


E QUE TEM AÇÃO DIRETA SOBRE NÚMERO QUÂNTICO, ESTADO QUÂNTICO, ESTRUTURA ELETRÔNICA, NÍVEIS DE ENERGIAS, E ONDAS ESTACIONÁRIAS NAS PARTÍCULAS DENTRO DOS ÁTOMOS,

COM ISTO SE TEM MAIS UM TIPO DE NÚMERO QUÂNTICO, QUE É O NÚMERO QU^NTICO DECA OU MAIS DIMENSÕES DE GRACELI.



SENDO QUE VARIA CONFORME O SDCTIE GRACELI. 


COMO TAMBÉM O TEMPO DE FLUXOS, E SPINS, MOMENTUM DOS FENÔMENOS E ENERGIAS,

OU SEJA SENDO VARIÁVEIS CONFORME O SDCTIE GRACELI E FORMANDO O UNIVERSO DIMENSIONAL QUÂNTICO DE GRACELI.

OU SEJA, SE INCLUI NO SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI.

OU SEJA, DIMENSÕES  DE ESTADOS QUÂNTICOS DE GRACELI.


E CONFORME O SDCTIE GRACELI.




O SDCTIE GRACELI É ATEMPORAL, OU SEJA PODE SE ENCAIXAR EM QUALQUER PARTE DA FÍSICA, QUÍMICA E OUTROS, E INCLUSIVE ALGUNS ALGUMAS TEORIAS E FUNÇÕES QUE AINDA NÃO FORAM FORMULADAS.


QUANDO SE ADICIONA ALGUM TIPO DE ENERGIA EM UM SISTEMA SE MODIFICA TODO SISTEMA DE TRANSFORMAÇÕES, INTERAÇÕES, DINÂMICAS, POTENCIAIS, ESTADOS QUÂNTICOS, ESTADOS DIMENSIONAIS E FENOMÊNICOS TRANSICIONAIS DE GRACELI, E OUTROS, E CONFORME O SDCTIE  GRACELI..

O ESTADO QUÂNTICO DE GRACELI  É RELATIVO POR SER VARIÁVEL AO SISTEMA SDCTIE GRACELI, E É INDETERMINADO PORQUE EM CADA ESTRUTURA, ENERGIA, DIMENSÃO DE GRACELI, CATEGORIA GRACELI SE TEM INTENSIDADES E VARIAÇÕES ESPECÍFICAS, MESMO ESTANDO TODO DENTRO DE UM SISTEMA SÓ, CORPO, OU PARTÍCULA. 


X



⇔  A FÍSICA DIMENSIONAL GRACELI PODE SER UM BRAÇO DA QUÂNTICA, OU MESMO SER UMA RELATIVIDADE FUNDAMENTADA NUMA TERCEIRA QUANTIZAÇÃO DO SDCTIE GRACELI.

ONDE SE VÊ O MUNDO FÍSICO NÃO APENAS POR QUANTUNS DE MATÉRIA, OU RELAÇÕES DE ONDAS E PARTÍCULAS, MAS NUM MUNDO TRANSCENDENTE E DE INTERAÇÕES E TRANSFORMAÇÕES CONFORME O SDCTIE GRACELI.

OU SEJA, O UNIVERSO DECADIMENSIONAL TRANSCENDENTE DE GRACELI, E NÃO APENAS DE QUANTUNS DE ENERGIAS, OU MESMO DE RELAÇÕES DE ONDAS PARTÍCULAS, OU DE INCERTEZAS.


EM QUE SE FUNDAMENTA EM :




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




efeito Josephson é um efeito físico que se manifesta pela aparição de uma corrente eléctrica que flui através de dois supercondutores fracamente interligados, separados apenas por uma barreira isolante muito fina. Esta disposição é conhecida como uma Junção Josephson e a corrente que atravessa a barreira é chamada de Corrente Josephson. Esses termos foram criados depois que o físico britânico Brian David Josephson previu a existência do efeito em 1962,[1] e um ano mais tarde, foram comprovadas por Anderson e Rowell.[2] Estes trabalhos valeram a Josephson o prémio Nobel da Física em 1973, juntamente com Leo Esaki e Ivar Giaever.
Este fenômeno tem aplicações muito importantes nos Circuitos Quânticos, tais como os SQUIDs.

O Efeito[editar | editar código-fonte]

As equações básicas[3] que regem a dinâmica do efeito Josephson são
 (equação da evolução da fase de supercondução)
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

 (Josephson ou relação Corrente-Fase no elo fraco)
onde  e  são a tensão e corrente através da junção de Josephson,  é a "diferença de fase" através da junção(i.e., a diferença no Fator fase, ou, argumento complexo, entre os parâmetros de ordem complexa de Ginzburg-Landau dos dois supercondutores da junção), e  é uma constante, chamda corrente crítica da junção. A corrente critica é um importante parâmetro fenomenológico do dispositivo que pode ser afetado pela temperatura tão bem quanto por um campo magnético. A constante física,  é o fluxo magnético quântico, o inverso do que é a constante Josephon.
Os três principais efeitos previstos por Josephson seguem das seguintes relações:
  1. O efeito CC Josephson. Ele faz referência ao fenômeno de uma corrente continua através de um isolante na falta de um campo eletromagnética externo, devido ao tunelamento. Esta corrente contínua de Josephson é proporcional ao seno da diferença da fase do isolante, e pode ter valores entre  e .
  2. O efeito CA Josephson. Com uma tensão constante  através das junções, a fase irá variar linearmente com o tempo e a corrente será uma corrente alternada com amplitude  e freqüência . A expressão completa para a corrente  se torna .
  3. X



  4. FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    número atômico, estrutura eletrônica, níveis de energia 
    onde c, velocidade da luz, é igual a .]
    X
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
    • X
    • CATEGORIAS DE GRACELI
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

     Isto significa que uma junção pode atuar como um perfeito conversor tensão para freqüência.
  5. O efeito reverso CA Josephson. Se a fase toma a forma , a tensão e corrente serão
 
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  
x
 [EQUAÇÃO DE DIRAC].  + FUNÇÃO TÉRMICA.
   +    FUNÇÃO DE RADIOATIVIDADE
  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.
  + ENTROPIA REVERSÍVEL 
+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
 ENERGIA DE PLANCK
X
  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  = x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
E os componentes CC serão

X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  
x
 [EQUAÇÃO DE DIRAC].  + FUNÇÃO TÉRMICA.
   +    FUNÇÃO DE RADIOATIVIDADE
  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.
  + ENTROPIA REVERSÍVEL 
+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
 ENERGIA DE PLANCK
X
  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  = x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Portanto, para diferentes tensões CC, a junção pode carregar uma corrente CC e atuar como um perfeito conversor freqüência para tensão.





Transição de fase supercondutora[editar | editar código-fonte]

Comportamento da Capacidade Térmica (cv, azul) e da Resistividade (ρ, verde) na transição de fase supercondutora
Nos materiais supercondutores, a característica da supercondutividade aparece quando a temperatura é abaixada até uma temperatura crítica (Tc). Esse valor de temperatura varia de material para material. Por convenção, supercondutores geralmente têm temperaturas críticas por volta de 20 K e até menores que 1 K. O mercúrio sólido, por exemplo, tem uma temperatura crítica de 4,2 K. Até 2009, a maior temperatura crítica encontrada para um supercondutor usual era de 39K para o Diboreto de Magnésio (MgB2).
Supercondutores de cupratos podem exibir temperaturas críticas muito maiores:
YBa2Cu3O7, um dos primeiros cupratos supercondutores a ser descoberto, tem uma temperatura crítica da ordem de 92 K, e cupratos com base no mercúrio podem atingir temperaturas críticas próximas de 130 K. A explicação para o comportamento desses supercondutores para altas temperaturas ainda continua desconhecido. O pareamento entre elétrons e fônons explica a supercondutividade nos supercondutores convencionais, mas não explicam o comportamento dos supercondutores mais novos com temperaturas críticas mais altas.
Mesmo com a temperatura fixa abaixo da temperatura crítica, materiais supercondutores cessam sua supercondutividade quando um campo magnético externo, maior que o campo magnético crítico, é aplicado. Isso acontece porque a Energia Livre de Gibbs da fase supercondutora aumenta quadraticamente com o campo magnético enquanto a energia livre de uma fase normal é independente do campo magnético. Se o material é supercondutor na falta de um campo, então a fase supercondutora da energia livre é menor do que a energia na fase normal, e para valores finitos de campo magnético (proporcionais à raiz quadrada da diferença das energias livres num campo magnético nulo) as duas energias livres serão iguais a transição para fase normal ocorrerá. Generalizando, quanto maiores às temperaturas e os campos magnéticos, menor é a fração de elétrons na banda supercondutora e consequentemente leva a uma maior penetração de London de correntes e campos magnéticos externos. A profundidade de penetração tende ao infinito na transição de fase.
O início da supercondutividade num material é acompanhada por uma abrupta mudança em várias das propriedades físicas, que é o fator marcante na transição de fase. Por exemplo, a capacidade térmica eletrônica é proporcional à temperatura num regime normal, mas na transição supercondutora sofre um salto descontínuo e deixa de ser linear. A baixas temperaturas, esta variação é dada por e-α/T, o comportamento exponencial é uma das evidencias da existência do gap de energia.
A ordem da transição da fase supercondutora foi uma questão amplamente debatida. Experimentos indicaram que a transição é de segunda ordem, isso significa que não há calor latente. No entanto na presença de um campo magnético externo há calor latente, isso acontece pelo fato de que na fase supercondutora a entropia é menor abaixo da temperatura crítica do que na fase normal. Como consequência disso, quando o campo magnético atinge valores maiores que o campo crítico, a transição de fase leva a uma diminuição na temperatura do material supercondutor.

O efeito Meissner[editar | editar código-fonte]

Ver artigo principal: Efeito Meissner
Efeito Meissner.
Walther Meissner e Robert Ochsenfeld concluíram que supercondutores quando colocados imersos em um campo magnético externo e resfriados abaixo da sua temperatura de transição, tendem a ejetar todo o campo magnético aplicado. Esse fenômeno é chamado de Efeito Meissner, mas não se resume apenas na ejeção do campo magnético por parte do supercondutor, pois na verdade o campo externo tende a penetrar o supercondutor mas apenas até uma certa profundidade definida por um parâmetro λ, denominado parâmetro de penetração de London, decaindo exponencialmente a zero na maior parte do material supercondutor. O efeito Meissner é uma característica primordial da supercondutividade, e para a maioria dos supercondutores λ é da ordem de 100 nm.
Muitas vezes o feito Meissner é erroneamente confundido com um tipo de diamagnetismo perfeito. Mas de acordo com a lei de Lenz quando promovemos uma mudança no campo magnético aplicado ao condutor e esse induz a criação de uma corrente elétrica que se opõe ao campo magnético. Em um condutor perfeito, uma corrente arbitrariamente grande pode ser induzida enquanto o campo resultante cancelaria o campo aplicado.
O efeito Meissner é de fato distinto, pois se observa a expulsão espontânea e abrupta do campo magnético interno que ocorre na transição supercondutora quando o material é resfriado abaixo da sua temperatura crítica, o que não seria de se esperar com base na lei de Lenz.
A explicação fenomenológica para o efeito Meissner foi dada pelos irmãos Heiz e Fritz London, que demonstraram que a energia eletromagnética livre em um supercondutor pode ser minimizada pela equação de London:
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde H é o campo magnético e λ é a profundidade de penetração de London.
Um supercondutor com pouco ou nenhum campo magnético em sue interior está no estado de Meissner, mas perde rapidamente esse estado quando o campo magnético externo aplicado é muito grande. Nos supercondutores do tipo I, a supercondutividade é abruptamente destruída quando a força do campo magnético ultrapassa um valor crítico Hc. Nos supercondutores do tipo II, quando o campo externo é aumentado até um valor crítico Hc1 leva a um estado intermediário (estado de vórtice), em que uma quantidade crescente de fluxo magnético penetra no material, mas sem apresentar resistência ao fluxo de corrente elétrica atingindo um valor crítico Hc2 onde a supercondutividade é destruída. O estado intermediário é causado pela passagem de vórtices no superfluido eletrônico, e às vezes são chamados de flúxions, pois o transporte por esses vórtices é quantizado.

O Gap de energia e a teoria BCS[editar | editar código-fonte]

Ficheiro:Flyingsuperconductor.ogv
Vídeo demonstrando a levitação por supercondutividade.
Um grande passo na evolução dos conhecimentos sobre os supercondutores é o estabelecimento da existência de um gap de energia Δ, da ordem de kTc, entre o estado fundamental e as excitações das quasi-partículas do sistema. Esse conceito já havia sido sugerido por Daunt e Mendelssohn na tentativa de explicar a ausência de efeitos termoelétricos. Mas as primeiras evidências quantitativas e experimentais vieram com as medidas precisas do calor específico dos supercondutores feitas por Corak. Estas médias mostraram que o calor específico eletrônico é definido por uma dependência exponencial com:
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde o estado normal do calor específico eletrônico é dado por Cen≈γTc, e a e b são constantes numéricas.
Teoria BCS foi proposta por John BardeenLeon Cooper, e John Robert Schrieffer e explica o fenômeno da supercondutividade.
A Teoria afirma principalmente que os elétrons em um material quando no estado supercondutor se agrupam em pares chamados pares de Cooper. Os pares de Cooper são elétrons condensados em estados de menor energia. Esta formação de pares de Cooper depende da microestrutura do material e da forma da rede cristalina, já que este par de elétrons se move de forma acoplada com a rede.
Independentemente e ao mesmo tempo, este fenômeno de supercondutividade foi explicado por Nikolay Bogoliubov por meio das então chamadas transformações de Bogoliubov.
Em muitos supercondutores, a interação atrativa entre elétrons (necessariamente aos pares) é conduzida aproximada e indiretamente pela interação entre os elétrons e a estrutura do cristal em vibração (os fônons).




Tunelamento quântico (ou efeito túnel) é um fenômeno da mecânica quântica no qual partículas podem transpor um estado de energia classicamente proibido. Isto é, uma partícula pode escapar de regiões cercadas por barreiras potenciais mesmo se sua energia cinética for menor que a energia potencial da barreira. Existem muitos exemplos e aplicações para os quais o tunelamento tem extrema importância, podendo ser observado no decaimento radioativo alfa, na fusão nuclear, na memória Flash, no diodo túnel e no microscópio de corrente de tunelamento (STM).[1]
Ficheiro:Quantum tunnel effect and its application to the scanning tunneling microscope.ogv
Vídeo explicativo sobre o Tunelamento Quântico e o Microscópio de Tunelamento
Neste fenômeno consolidam-se conceitos imprescindíveis para a mecânica quântica como a natureza ondulatória da matéria, a função de onda associada a partículas, bem como o princípio da incerteza de Heisenberg.[2]

História[editar | editar código-fonte]

O tunelamento quântico foi desenvolvido a partir do estudo da radioatividade. Em meio ao crescente sucesso da mecânica quântica na terceira década do século 20, nada era mais impressionante do que o entendimento do Efeito Túnel - a penetração de ondas de matéria e a transmissão de partículas através de uma barreira potencial. Depois de algum tempo, o estudo mais aprofundado envolvendo tunelamento, supercondutoressemicondutores e a invenção do Microscópio de tunelamento, por exemplo, renderam à física 5 prêmios Nobel.[3]
Em 1927, Friedrich Hund foi o primeiro a tomar nota da existência do Efeito Túnel em seus trabalhos sobre o potencial de poço duplo.[3] George Gamow, em 1928, resolveu a teoria do decaimento alfa de um núcleo, via tunelamento com uma pequena ajuda matemática de Nikolai Kochin.[4]
Influenciado por Gamow, Max Born desenvolveu a teoria do Tunelamento , percebendo-a como uma consequência da mecânica quântica, aplicável não só à física nuclear, mas a uma série de outros sistemas diferentes. Os físicos Leo EsakiIvar Giaever e Brian Josephson descobriram, respectivamente, o tunelamento de elétrons em semicondutores, supercondutores e a supercorrente através de junções em supercondutores,o que lhes rendeu o Premio Nobel de Física no ano de 1973.[5]

Explicação do fenômeno[editar | editar código-fonte]

Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]
Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.
Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
 , 
X



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]